

# Introduction to Python

Presented by GradQuant Steph DeMora

#### Acknowledgement:



Slides adopted by **Preston Carman, Steven Jacobs, Rohith Mohan, Heran Bhakta...** 



Based on: Introduction to Python and Programming by Michael Ernst (UW CSE 190p, Summer 2012)

# Who should attend?





#### NO PROGRAMMING EXPERIENCE

NEVER USED PYTHON

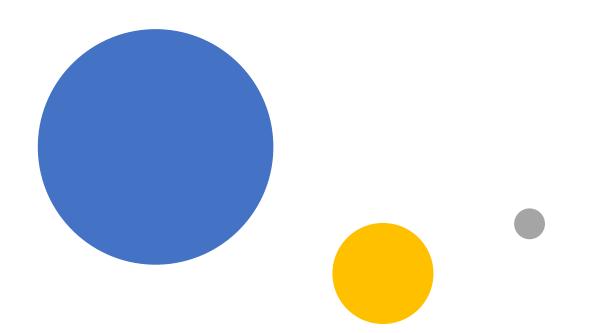
# Goals for this workshop



Introduce Python programming concepts

Distributions and packages (anaconda)




#### Review Python syntax



Review available development tools



Create a Python script!



## Anaconda

#### 🔳 Anaconda Prompt - conda install pyserial ┥ -----

(C:\Users\GradQuant\Anaconda3) C:\Users\GradQuant≻conda install pyserial Fetching package metadata ..... Solving package specifications: .

Package plan for installation in environment C:\Users\GradQuant\Anaconda3:

The following NEW packages will be INSTALLED:

pyserial: 3.4-py36\_0

The following packages will be UPDATED:

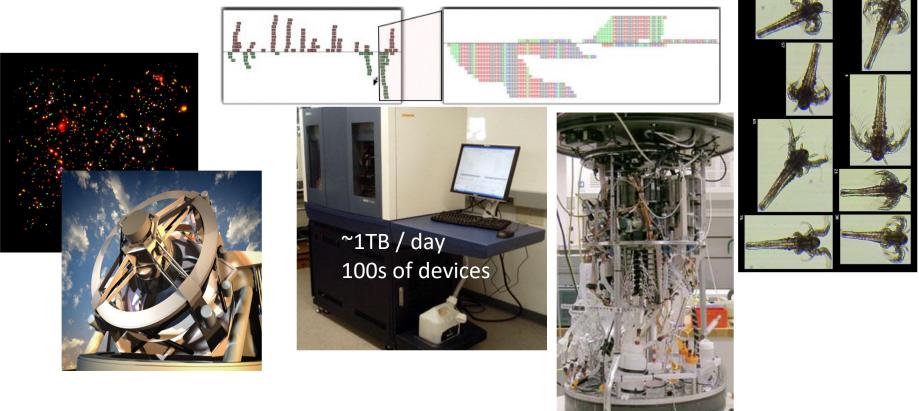
| conda:<br>conda-env: | 4.3.29-py36_0<br>2.6.0-0 | conda-forge> 4.5.11-py36_0<br>conda-forge> 2.6.0-1  |
|----------------------|--------------------------|-----------------------------------------------------|
| freetype:            | 2.7-vc14 2               | conda-forge [vc14]> 2.9.1-ha9979f8 1                |
| icu:                 | 58.1-vc14_1              | conda-forge [vc14]> 58.2-ha66f8fd_1                 |
| libiconv:            | 1.14-vc14_4              | conda-forge [vc14]> 1.15-h1df5818_7                 |
| libpng:              | 1.6.28-vc14_2            | conda-forge [vc14]> 1.6.34-h79bbb47_0               |
| libtiff:             | 4.0.7-vc14_1             | conda-forge [vc14]> 4.0.9-h36446d0_2                |
| libxml2:             | 2.9.5-vc14_1             | conda-forge [vc14]> 2.9.8-hadb2253_1                |
| libxslt:             | 1.1.29-vc14_5            | conda-forge [vc14]> 1.1.32-hf6f1972_0               |
| openssl:             | 1.0.2l-vc14_0            | <pre>conda-forge [vc14]&gt; 1.0.2p-hfa6e2cd_0</pre> |
| pillow:              | 4.3.0-py36_1             | conda-forge> 5.2.0-py36h08bbbbd_0                   |
| pycosat:             | 0.6.2-py36hf17546d_1     | > 0.6.3-py36hfa6e2cd_0                              |
| sqlite:              | 3.19.3-vc14_1            | <pre>conda-forge [vc14]&gt; 3.25.2-hfa6e2cd_0</pre> |
| tk:                  | 8.6.6-vc14_5             | conda-forge [vc14]> 8.6.8-hfa6e2cd_0                |
| yaml:                | 0.1.6-vc14_0             | conda-forge [vc14]> 0.1.7-hc54c509_2                |

Proceed ([y]/n)? y

| conda-env-2.6. | 100% | ********************************* | Time: | 0:00:00 | 90.16 kB/s |
|----------------|------|-----------------------------------|-------|---------|------------|
| icu-58.2-ha66f | 100% | ********************************* | Time: | 0:00:12 | 1.90 MB/s  |
| libiconv-1.15- | 100% |                                   | Time: | 0:00:00 | 1.18 MB/s  |
| libpng-1.6.34- | 100% |                                   | Time: | 0:00:01 | 1.23 MB/s  |
| openssl-1.0.2p | 100% | ********************************* | Time: | 0:00:02 | 2.22 MB/s  |
| sqlite-3.25.2- | 100% |                                   | Time: | 0:00:00 | 5.07 MB/s  |
| tk-8.6.8-hfa6e | 100% | ********************************* | Time: | 0:00:01 | 2.73 MB/s  |
| yaml-0.1.7-hc5 | 100% | ******************************    | Time: | 0:00:00 | 2.25 MB/s  |
| freetype-2.9.1 | 100% | ********************************* | Time: | 0:00:00 | 7.70 MB/s  |
| libtiff-4.0.9- | 100% | ********************************* | Time: | 0:00:00 | 5.44 MB/s  |
| libxml2-2.9.8- | 100% |                                   | Time: | 0:00:00 | 4.19 MB/s  |
| pycosat-0.6.3- | 100% | ********************************* | Time: | 0:00:00 | 2.14 MB/s  |
| pyserial-3.4-p | 100% | ********************************* | Time: | 0:00:00 | 3.86 MB/s  |
| libxslt-1.1.32 | 100% |                                   | Time: | 0:00:00 | 1.15 MB/s  |
|                |      |                                   |       |         |            |

 $\Box$   $\times$ 

-


\_

| Anaconda Navigator |     |                   |                                           | - 🗆                | 2   |
|--------------------|-----|-------------------|-------------------------------------------|--------------------|-----|
| e <u>H</u> elp     |     |                   |                                           |                    |     |
|                    | NDA | NAVIGATO          |                                           | in to Anaconda Clo | bud |
|                    | 1.0 |                   |                                           |                    |     |
| ✿ Home             |     | Installed         | ✓ Channels Update index Search Packages Q |                    |     |
| Environments       |     | Name 🗸            | T Description                             | Version            |     |
| <b>A</b>           |     | scikit-learn      | 0                                         | 0.19.1             |     |
| 💼 Projects (beta)  |     | scipy             | 0                                         | 0.19.1             |     |
| Learning           |     | seaborn           | 0                                         | 0.8.0              |     |
| K Community        |     | setuptools        | 0                                         | 36.5.0             |     |
| Communicy          |     | simplegeneric     | 0                                         | 0.8.1              |     |
|                    |     | singledispatch    | 0                                         | 3.4.0.3            |     |
|                    | >   | ✓ sip             | 0                                         | 4.18.1             |     |
|                    |     | 🗹 six             | 0                                         | 1.11.0             |     |
|                    |     | snowballstemmer   | 0                                         | 1.2.1              |     |
| Documentation      |     | sortedcollections | 0                                         | 0.5.3              |     |
| Developer Blog     |     | sortedcontainers  | 0                                         | 1.5.7              |     |
| Feedback           |     | sphinx            | 0                                         | 1.6.3              |     |
| FEEUDACK           |     | sphinxcontrib     | 0                                         | 1.0                |     |
| Y 🚻 🖓              |     | sprinkconcrib     |                                           | 1.0                |     |

| O Anaconda Navigator      |           |                        |                                                 | - 0             | ×  |
|---------------------------|-----------|------------------------|-------------------------------------------------|-----------------|----|
| <u>F</u> ile <u>H</u> elp |           |                        |                                                 |                 |    |
| ANACON                    | <b>DA</b> | NAVIGATO               | R Sign in t                                     | o Anaconda Clou | bu |
| A Home                    |           |                        |                                                 |                 |    |
|                           |           | Installed              | Channels     Update index     Search Packages Q |                 |    |
| The Environments          |           | Name 🗸                 | T Description                                   | Version         | ^  |
|                           |           | 🗹 scikit-learn         | 0                                               | 0.19.1          |    |
| 💼 Projects (beta)         |           | 🗹 scipy                | 0                                               | 0.19.1          |    |
| 单 Learning                |           | seaborn                | 0                                               | 0.8.0           |    |
| Scommunity                |           | setuptools             | 0                                               | 36.5.0          |    |
|                           |           | simplegeneric          | 0                                               | 0.8.1           |    |
|                           | >         | singledispatch         | 0                                               | 3.4.0.3         |    |
|                           | 1         | 🗹 sip                  | 0                                               | 4.18.1          |    |
|                           |           | 🗹 six                  | 0                                               | 1.11.0          |    |
|                           |           | ✓ snowballstemmer      | 0                                               | 1.2.1           |    |
| Documentation             |           | sortedcollections      | 0                                               | 0.5.3           |    |
| Developer Blog            |           | sortedcontainers       | 0                                               | 1.5.7           |    |
| Feedback                  |           | ✓ sphinx               | 0                                               | 1.6.3           |    |
| Y You op                  |           | sphinxcontrib          | 0                                               | 1.0             | ~  |
| <b>y</b> 110 %            |           | 220 packages available |                                                 |                 |    |
|                           |           |                        |                                                 |                 |    |

# All of science is reducing to computational data manipulation

- Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS)
- Biology: lab automation, high-throughput sequencing,
- Oceanography: high-resolution models, cheap sensors, satellites



### **Example: Assessing treatment efficacy**

|    | Α      | В        | С        | D          | E        | F         | G       | Н              |            | J                   |
|----|--------|----------|----------|------------|----------|-----------|---------|----------------|------------|---------------------|
| 1  | fu_2wk | fu_4wk   | fu_8wk   | fu_12wk    | fu_16wk  | fu_20wk   | fu_24wk | total4type_fu  | clinic_zip | pt_zip              |
| 2  | 1      | 3        | 4        | 7          | 9        | 9         | 9       | 12             | 98405      | 98405               |
| 3  | 2      | 4        | 6        | 7          | 8        | 8         | 8       | 8              | 98405      | 98403               |
| 4  | 0      | G        |          |            |          | 0         | 0 Zir   | code of clinio | 8405       | 98445               |
| 5  | 3      | -        |          | follow up  |          | 5         | 5       |                | 8405       | 98332               |
| 6  | 0      | <b>4</b> |          | veeks afte |          | 0         | 0       | 0              | 00405      | <mark>99</mark> 405 |
| 7  | 2      | 2 tre    | atment   | enrollme   | nt.      | 2         | 2       | Zip code       | of patient | 402                 |
| 8  | 1      | 2        | 5        | 6          | 8        | 10        | 10      | 14             | 98405      | 98418               |
| 9  | 1      | 1        | 2        | 2          | 2        | 2         | 2       | 2              | 98499      | 98406               |
| 10 | 0      | 0        | 1        | 2          | 2        | 2         | 2       | 6              | 98405      | 98404               |
| 11 | 0      | 0        | 0        | 0          | 0        | 0         | 0       | 0              | 98405      | 98402               |
| 12 | 1      | 1        | 2        | 2          | 4        | 4         | 4       | 4              | 98405      | 98405               |
| 13 | 1      |          |          |            | 1        |           |         | -              | 98404      | 98404               |
| 14 | 2      | Ques     | stion: L | Does th    | e distai | nce bet   | ween t  | he             | 98499      | 98498               |
| 15 | 0      | patie    | ent's h  | ome an     | d clinic | : influer | nce the | number         | 98499      | 98445               |
| 16 | 1      |          |          |            |          |           |         |                | 98499      | 98405               |
| 17 | 1      | ΟΓ ΓΟ    | now u    | os, and    | theref   | ore trea  | atment  |                | 98499      | 98498               |
| 18 | 1      | 3        | 3        | 3          | 3        | 3         | 3       | 3              | 98499      | 98499               |
| 19 | 1      | 1        | 4        | 5          | 7        | 7         | 7       | 7              | 98499      | 98371               |

### Assessing treatment efficacy

# This program reads an Excel spreadsheet whose penultimate

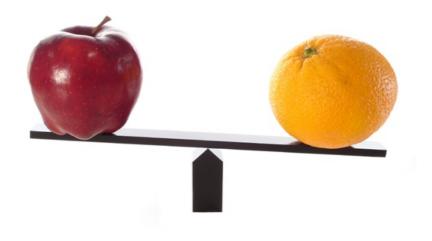
# and antepenultimate columns are zip codes.

# It adds a new last column for the distance between those zip

# codes, and outputs in CSV (commaseparated values) format.

# Call the program with two numeric values: the first and last

# row to include.


# The output contains the column headers and those rows.

```
followupdata.pv
   import random, sys, time, xlrd # library for working with Excel spreadsheets
   from gdapi import GoogleDirections
  # No key needed if few queries
   gd = GoogleDirections('dummy-Google-key')
   wb = xlrd.open workbook('mhip zip eScience 121611a.xls')
   sheet = wb.sheet by index(0)
10 # User input: first row to process, first row not to process
   first row = max(int(sys.argv[1]), 2)
   row limit = min(int(sys.argv[2]+1), sheet.nrows)
14 def comma separated(lst):
     return ",".join([str(s) for s in lst])
   headers = sheet.row values(0) + ["distance"]
   print comma separated(headers)
20 ▼ for rownum in range(first row,row limit):
       row = sheet.row values(rownum)
       (zip1, zip2) = row[-3:-1]
       if zip1 and zip2:
            # Clean the data
           zip1 = str(int(zip1))
           zip2 = str(int(zip2))
           row[-3:-1] = [zip1, zip2]
           # Compute the distance via Google Maps
           try:
               distance = gd.query(zip1,zip2).distance
           except:
               print >> sys.stderr, "Error computing distance:", zip1, zip2
                distance = ""
          # Print the row with the distance
         print comma separated(row + [distance])
         # Avoid too many Google queries in rapid succession
         time.sleep(random.random()+0.5)
```

1. A variable contains a value



#### 3. Different types act differently



#### 2. Python performs operations



#### 4. A program is a recipe



#### Colvin Run Mill Corn Bread 1 cup cornmeal 1 cup flour ½ teaspoon salt 4 teaspoons baking powder 3 tablespoons sugar 1 egg 1 cup milk ¼ cup shortening (soft) or vegetable oil



Mix together the dry ingredients. Beat together the egg, milk and shortening/oil. Add the liquids to the dry ingredients. Mix quickly by hand. Pour into greased 8x8 or 9x9 baking pan. Bake at 425 degrees for 20-25 minutes.

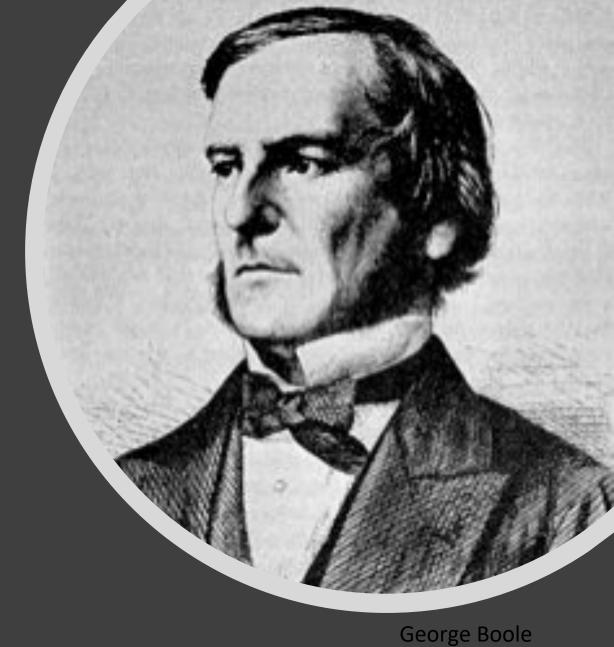
### Don't panic!



This workshop is for people who have never programmed

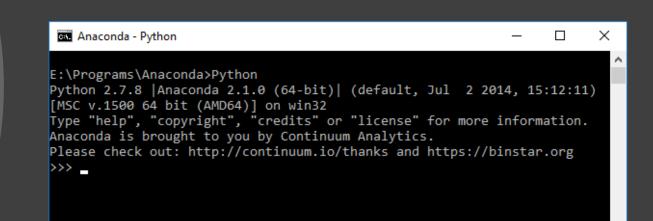


(If you have programmed, you don't need to be here.) Ask questions!


• This is the best way to learn

## 1. A variable contains a value




# 4 Basic types of values

- Integers (int): -22, 0, 44
  - No decimal points
- Real numbers (float, for "floating point"):
   2.718, 3.14159
- Strings (str): "Steph is the coolest!"
- Truth values (bool, for "Boolean"): TRUE,
   FALSE



### The Python Interpreter

- Type Python to start running python
- Python prompts with '>>>'.
- To exit Python: CTRL-D or type exit()



### You type expressions. Python computes their values.

- 5
- 3+4
- 44/2
- 2\*\*3 (what is a \*\*?)
- 3\*4+5\*6
  - If precedence is unclear, use parentheses
- (72 32) / 9.0 \* 5

### Important: Integers vs. Floats

- An operation on Integers will return an Integer
- An operation on Floats will return a Float
- What will each of these return?
  - 12 / 4
  - 13/4
  - 13.0 / 4.0
  - 13 / 4.0
  - Modulo operator (for Integers)
  - 13 % 4
  - 12 % 4

### Expressions

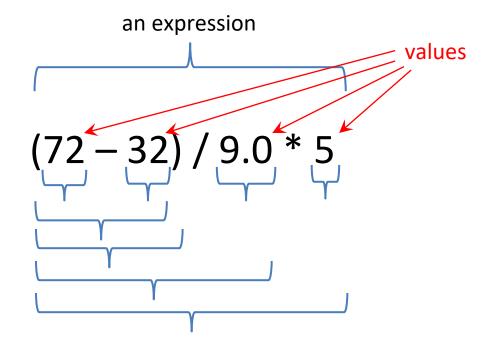
**Expression**: A data value or set of operations to compute a value.

Examples: 1 + 4 \* 3 42

#### Arithmetic operators we will use:

+ - \* / addition, subtraction/negation, multiplication, division
 % modulus, a.k.a. remainder
 \*\* exponentiation

Precedence: Order in which operations are computed.


- \* / % \*\* have a higher precedence than + –
- 1 + 3 \* 4 is 13

Parentheses can be used to force a certain order of evaluation.

(1 + 3) \* 4 is 16

### An expression is evaluated from inside out

• How many expressions are in this Python code?



(72 – 32) / 9.0 \* 5 40 / 9.0 \* 5 4.44 \* 5 22.2

### Assignment



Now we have expressions that return values



How do we store these values?

Variables



Assignment Operator X = 5 NOT an equality!

In Python, equality is represented as ==

### Variables hold values

- To assign a variable, use "variableName = expression"
- pi = 3.14 .
- pi
- Lost = 4815162342
- Lost
- 22 = xWhy?

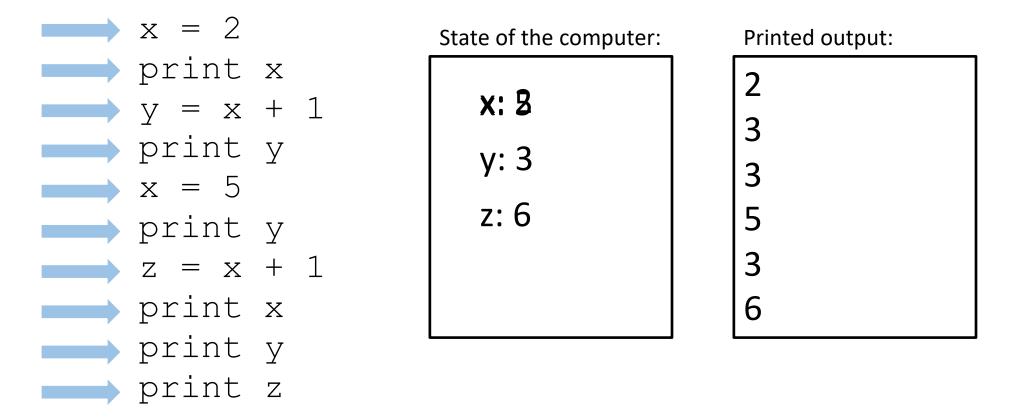
- # Error!
- Not all variable names are permitted



 Names are case sensitive and cannot start with a number. They can contain letters, numbers, and underscores.

- bob Bob \_bob \_2\_bob \_ bob\_2 BOB
- ullet
- There are some reserved words:

and, assert, break, class, continue, def, del, elif, else, except, exec, finally, for, from, global, if, **import**, in, is, lambda, not, or, pass, print, raise, return, try, while


### Changing existing variables ("re-binding" or "re-assigning")

- "=" in an assignment is *not* a promise of eternal equality
- Evaluating an expression gives a new (copy of a) number, rather than changing an existing one

| Х | = | 2 | - | 1 |
|---|---|---|---|---|
| Х |   |   |   |   |
| У | = | Х |   |   |
| У |   |   |   |   |
| Х | = | 5 |   |   |
| Х |   |   |   |   |
| У |   |   |   |   |

### How an assignment is executed

- 1. Evaluate the right-hand side to a value
- 2. Store that value in the variable



To visualize a program's execution: <u>http://people.csail.mit.edu/pgbovine/python/tutor.html</u>

## 2. Python performs operations



### Arithmetic Operations (already seen)

- 22 \* 10
  22 / 10
  22.0 / 10
  3 \*\* 2
- . (5 +6) \* (4 -3)

x = 3
y = x + 2
z = x + y

What about this?
z = 2
z - 5

. **Z** 

# More operations: Conditionals (return TRUE/FALSE)

22 > 422 < 4 22 == 4x = 100x == 200x == 10022 = 4x >= 5 not True not (x >= 200) 3<4 and 7<6 4<3 or 5<6

```
temp = 72 is_liquid = temp > 32 and temp < 212
```

# Error!

# Assignment, not conditional!

### More operations: "strings"

A string represents text, can use single or double quotations

"Python" or 'Python' myName = "Steph"

#### Operations:

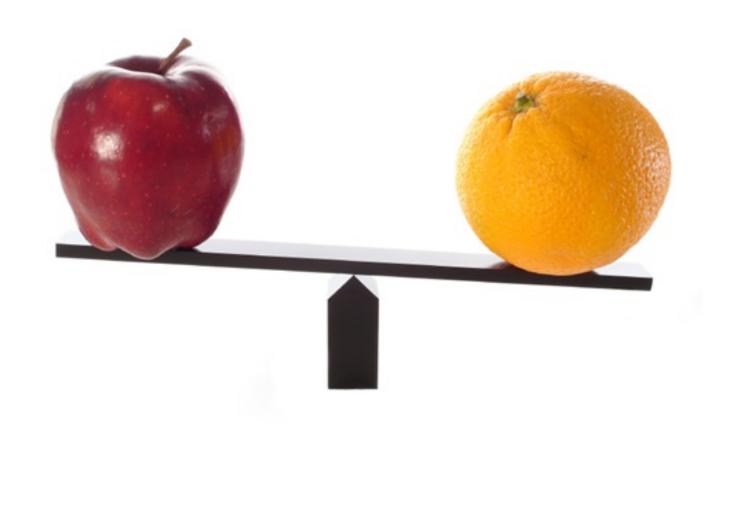
- Length: len(myName)
- Concatenation: "Steph" + 'DeMora'

#What will this do?

• More advanced: Containment/searching:

'eph' in myName
"v" in myName

#What do these return?


### **Mathematical Operations**

• Python has useful commands for performing calculations.

| Command name                   | <b>Description</b>       | <u>Constant</u> | <b>Description</b> |
|--------------------------------|--------------------------|-----------------|--------------------|
| abs ( <b>value</b> )           | absolute value           | ea              | 2.7182818          |
| ceil( <b>value</b> )           | rounds up                | pi              | 3.1415926          |
| cos ( <b>value</b> )           | cosine, in radians       |                 |                    |
| floor( <b>value</b> )          | rounds down              |                 |                    |
| log( <b>value</b> )            | logarithm, base <i>e</i> |                 |                    |
| log10( <b>value</b> )          | logarithm, base 10       |                 |                    |
| <pre>max(value1, value2)</pre> | larger of two values     |                 |                    |
| min( <b>value1, value2</b> )   | smaller of two values    |                 |                    |
| round( <b>value</b> )          | nearest whole number     |                 |                    |
| sin( <b>value</b> )            | sine, in radians         |                 |                    |
| sqrt( <b>value</b> )           | square root              |                 |                    |

- To use many of these commands, you must write the following at the top of your Python program:
- import math

## 3. Different types act differently



Operations behave differently on different types Moral: Python *sometimes* tells you when you do something that does not make sense.

### **Operations behave differently on different types**

- 15.0 / 4.0
- 15 / 4
- 15.0 / 4
- 15 / 4.0

Type conversion: **float**(15) **int**(15.0) **int**(15.5) **int**("15") str(15.5)**float**(15) / 4 int(X)

## 4. A program is a recipe

#### CORNBREAD

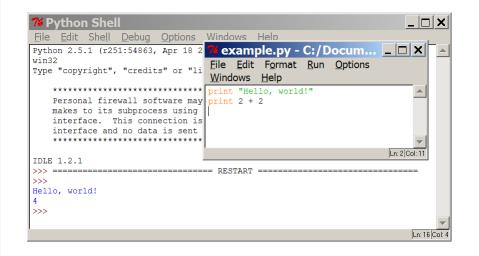
#### **Colvin Run Mill Corn Bread**

- 1 cup cornmeal
- 1 cup flour
- 1/2 teaspoon salt
- 4 teaspoons baking powder
- 3 tablespoons sugar
- 1 egg
- 1 cup milk
- 1/4 cup shortening (soft) or vegetable oil

Mix together the dry ingredients. Beat together the egg, milk and shortening/oil. Add the liquids to the dry ingredients. Mix quickly by hand. Pour into greased 8x8 or 9x9 baking pan. Bake at 425 degrees for 20-25 minutes.

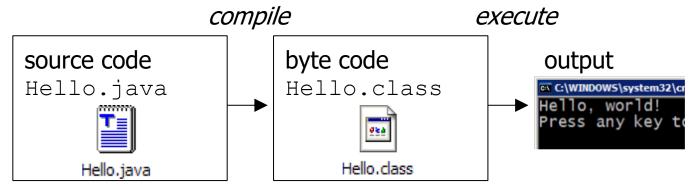


### What is a program?

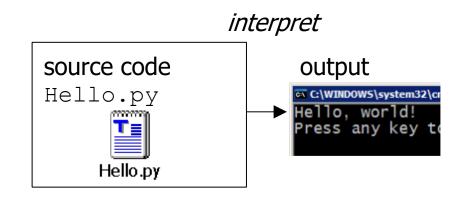

- A program is a sequence of instructions
- The computer executes one after the other, as if they had been typed to the interpreter
- Saving as a program is better than re-typing from scratch

```
x = (enter some value here)
y = (enter some value here)
z = x + y
print "x=", x
print "y=", y
print "The sum of", x, "and", y, "is", z
```

### **Programming Basics**


- code or source code: The sequence of instructions in a program.
- syntax: The set of legal structures and commands that can be used in a particular programming language.
- **output**: The messages printed to the user by a program.
- console: The place where the user interacts with the program
  - Some source code editors pop up the console as an external window, and others contain their own console window.

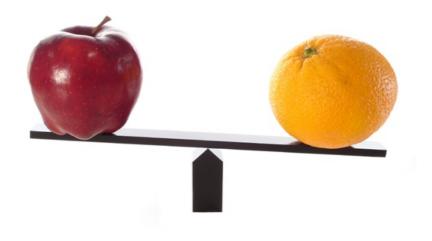
C:\WINDOWS\system32\cmd.exe Hello, world! Press any key to continue




## **Compiling and interpreting**

Many languages require you to compile (translate) your program into a form that the machine understands.




Python is instead directly interpreted into machine instructions.



1. A variable contains a value



#### 3. Different types act differently



#### 2. Python performs operations



#### 4. A program is a recipe



#### Colvin Run Mill Corn Bread 1 cup cornmeal 1 cup flour ½ teaspoon salt 4 teaspoons baking powder 3 tablespoons sugar 1 egg 1 cup milk ¼ cup shortening (soft) or vegetable oil



Mix together the dry ingredients. Beat together the egg, milk and shortening/oil. Add the liquids to the dry ingredients. Mix quickly by hand. Pour into greased 8x8 or 9x9 baking pan. Bake at 425 degrees for 20-25 minutes.

### **Exercise 1:**

x = (enter some value here) y = (enter some value here) z = x + y print "x=", x print "y=", y print "The sum of", x, "and", y, "is", z

## **Running programs on UNIX**

% python filename.py

|                     | 🏫 gradsuccess — -bash — 73×21            |   |
|---------------------|------------------------------------------|---|
| ucrwpa-3-3-10-25-73 | 3-179:~ gradsuccess\$ python filename.py | B |
|                     |                                          |   |
|                     |                                          |   |
|                     |                                          |   |
|                     |                                          |   |
|                     |                                          |   |
|                     |                                          |   |
|                     |                                          |   |
|                     |                                          |   |
|                     |                                          |   |
|                     |                                          |   |
|                     |                                          |   |
|                     |                                          |   |

## Comments

- Start comments with # the rest of line is ignored.
- Can include a "documentation string" as the first line of any new function or class that you define.

# this is a comment

### import statements

- Import allows a Python script to import additional modules
  - import numpy
    import os

or

```
import numpy as np
import os
```

or

```
import numpy as np, os
```

## **Exercise 1:**

```
#get inputs from the user
x = input('Provide a value for x:')
y = input ('Provide a value for y:')
#calculate output
z = x + y
#print results to the user
print "x = ", x
print "y = ", y
print "The sum of", x, "and", y, "is", z
```

## **Exercise 2: Fahrenheit to Celsius:**

How could we take as input from the user a Fahrenheit temperature, and then convert it to Celsius?

Mathematical Equation for Celsius: (F - 32)  $\times$  5/9

Think about: Input and output Integers vs Floats

## **Exercise 2: Fahrenheit to Celsius:**

```
#get inputs from the user
F = input('Provide the temperature in Fahrenheit:')
```

```
#calculate output
#make sure you maintain floats!
#try C = (F-32) * 5 / 9
C = (F - 32) * 5.0 / 9.0
```

```
#print results to the user
print "The temperature in Celsius is", C
```

## Exercise 3: if statements

```
"if" provides a means of checking whether some condition is
met.
Tabs are used to show what should run if the condition is
met
if (5 < 6):
      print "five is less than six"
if (x == "banana"):
      print "x is banana"
if (y \le z):
      print "y is less than or equal to z''
      print "therefore I cannot choose the wine in front of
me"
```

### Exercise 3: if statements

Have the user input a number. If this number is greater than 1000, output a message "Wow that is a big number!"

## Exercise 3: if statements

```
#get inputs from the user
x = input('Provide a value:')
#print results to the user
if (x > 1000):
      print "Wow that is a big number!"
*ALTERNATIVELY:
if (1000 < x):
      print "Wow that is a big number!"
```

```
else if provides a means to check alternate conditions:
Consider this code:
if (x < 5):
    print "x is pretty small"
if (x < 10):
     print "x is average"
if (x < 15):
     print "x is large"
if (x \ge 15):
     print "x is huge"
```

```
else if provides a means to check alternate conditions:
Consider this code:
if (x < 5):
     print "x is pretty small"
elif (x < 10):
     print "x is average"
elif (x < 15):
      print "x is large"
else:
      print "x is huge"
```

```
Let's make a text-based adventure!
First line should be this:
x = raw input(You are trapped with five dragons.
                   (A) run (B) fight (C) make friends: ')
You should output a unique message based on whether the user
types A, B, or C
How do you handle when a user types something else?
```

```
#get inputs from the user
x = raw input(You are trapped with five dragons.
                   (A) run (B) fight (C) make friends: ')
#print results to the user
if (x == ``A''):
      print "You cannot escape. You die!"
elif (x == "B"):
      print "You cannot win. You die!"
elif (x == "C"):
      print "They do not want to be friends. You die!"
elif (x == "cheat"):
      print "You found the way to cheat. You win!"
else:
      print "Invalid choice. You die"
```

# Moving forward...

- There are many more tools available in Python that we can't cover here.
- If you want to move forward, the next things to look at would be:
  - Lists
  - For loops/while loops
  - Reading/Writing files

- Save many values into a giant "list" (similar to a 1D array)
- Most likely needed for data analysis
- Can store any type into lists

```
myList = [1, 2.0, 3, 'hello', 'bye', 3.1415]
```

- Save many values into a giant "list" (similar to a 1D array)
- Most likely needed for data analysis
- Can store any type into lists

```
myList = [1, 2.0, 3, 'hello', 'bye', 3.1415]
print myList[3]
```

- Save many values into a giant "list" (similar to a 1D array)
- Most likely needed for data analysis
- Can store any type into lists

```
myList = [1, 2.0, 3, 'hello', 'bye', 3.1415]
print myList[3]
```

#### <u>Numpy</u>

```
numpy.array([1, 2, 3, 4])
```

- Save many values into a giant "list" (similar to a 1D array)
- Most likely needed for data analysis
- Can store any type into lists

```
myList = [1, 2.0, 3, 'hello', 'bye', 3.1415]
print myList[3]
```

#### <u>Numpy</u>

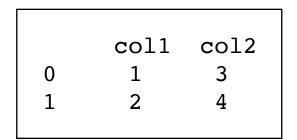
```
numpy.array([1, 2, 3, 4])
numpy.array([1,2], [3,4])
```

- Save many values into a giant "list" (similar to a 1D array)
- Most likely needed for data analysis
- Can store any type into lists

```
myList = [1, 2.0, 3, 'hello', 'bye', 3.1415]
print myList[3]
```

#### <u>Numpy</u>

```
numpy.array([1, 2, 3, 4])
numpy.array([1,2], [3,4])
```


- Save many values into a giant "list" (similar to a 1D array)
- Most likely needed for data analysis
- Can store any type into lists

```
myList = [1, 2.0, 3, 'hello', 'bye', 3.1415]
print myList[3]
```

#### <u>Numpy</u>

```
numpy.array([1, 2, 3, 4])
numpy.array([1,2], [3,4])
```

### **Pandas**



### **Python editors**

- Eclipse with PyDev <u>http://pydev.org/</u>
- Sublime Text

ttp://www.sublimetext.com/

PyCharm

http://www.jetbrains.com/pycharm/

- Why use a python editor
  - Syntax Highlighting
  - Error Detection
  - Auto-completion



- Last commonly used release before version 3
- Implements some of the new features in version 3, but fully backwards compatible
- Released a few years ago
- Many changes (including incompatible changes)
- More existing third party software is compatible with Python 2 than Python 3 right now



### Resources



Python's website <u>python.org/</u>

Codeacademy codecademy.com/tracks/ python





GradQuant Resources gradquant.ucr.edu/worksh op-resources/ Stack Overflow website stackoverflow.com/

## GradQuant

| Make     | One-on-one Consultations: Make appointment at gradquant.ucr.edu                          |
|----------|------------------------------------------------------------------------------------------|
| Keep     | Keep an eye out for emails regarding more seminars gradquant.ucr.edu/workshop-resources/ |
| Remember | Remember to fill out the seminar survey. Thank you!                                      |

#### Other libraries/pythonrelated tools

- PyCharm
- Sublime Text
- Numpy
- SciPy
- Seaborn
- Bokeh
- Plotly
- Pandas

- Scikit-learn
- Django
- Tensorflow (python interface)
- Anaconda
- Other libraries specific to your field (e.g. Biopython)