
Introduction to
Python
Presented by GradQuant
Steph DeMora

Acknowledgement:

Slides adopted by Preston
Carman, Steven Jacobs,
Rohith Mohan, Heran
Bhakta…

Based on: Introduction to
Python and Programming
by Michael Ernst (UW CSE
190p, Summer 2012)

Who should
attend?

NO PROGRAMMING
EXPERIENCE

NEVER USED
PYTHON

Goals for this
workshop

Introduce Python
programming
concepts

Distributions and
packages
(anaconda)

Review Python syntax

Review available development tools

Create a Python script!

Anaconda

9

– Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS)
– Biology: lab automation, high-throughput sequencing,
– Oceanography: high-resolution models, cheap sensors, satellites

40TB / 2 nights

~1TB / day
100s of devices

All of science is reducing to computational
data manipulation

Zip code of clinic

Zip code of patient

number of follow ups
within 16 weeks after
treatment enrollment.

Question: Does the distance between the
patient’s home and clinic influence the number
of follow ups, and therefore treatment
efficacy?

10

Example: Assessing treatment efficacy

Assessing
treatment efficacy

• # This program reads an Excel spreadsheet
whose penultimate
• # and antepenultimate columns are zip codes.
• # It adds a new last column for the distance
between those zip
• # codes, and outputs in CSV (comma-
separated values) format.
• # Call the program with two numeric values:
the first and last
• # row to include.
• # The output contains the column headers and
those rows.

11

2. Python performs operations1. A variable contains a value

4. A program is a recipe3. Different types act differently

Don’t panic! This workshop is for people
who have never programmed

(If you have programmed, you
don’t need to be here.)

Ask questions!
• This is the best way to learn

1. A
variable

contains a
value

4 Basic types of
values
• Integers (int): -22, 0, 44

• No decimal points

• Real numbers (float, for “floating point”):
2.718, 3.14159

• Strings (str): “Steph is the coolest!”

• Truth values (bool, for “Boolean”): TRUE,
FALSE

George Boole

The Python
Interpreter

• Type Python to start running
python

• Python prompts with ‘>>>’.

• To exit Python: CTRL-D or type
exit()

You type
expressions.
Python
computes their
values.

• 5
• 3+4
• 44/2
• 2**3 (what is a **?)
• 3*4+5*6

• If precedence is unclear, use
parentheses

• (72 – 32) / 9.0 * 5

Important:
Integers vs.
Floats

• An operation on Integers will return
an Integer

• An operation on Floats will return a
Float

• What will each of these return?
• 12 / 4
• 13 / 4
• 13.0 / 4.0
• 13 / 4.0
• Modulo operator (for Integers)
• 13 % 4
• 12 % 4

Expression: A data value or set of operations to compute a value.
Examples: 1 + 4 * 3

42

Arithmetic operators we will use:
+ - * / addition, subtraction/negation, multiplication, division
% modulus, a.k.a. remainder
** exponentiation

Precedence: Order in which operations are computed.
* / % ** have a higher precedence than + -

1 + 3 * 4 is 13

Parentheses can be used to force a certain order of evaluation.

(1 + 3) * 4 is 16

Expressions

(72 – 32) / 9.0 * 5

an expression
values

(72 – 32) / 9.0 * 5

40 / 9.0 * 5
4.44 * 5
22.2

An expression is evaluated from inside out
• How many expressions are in this Python code?

Assignment

Now we have expressions
that return values

How do we store
these values? Variables

Assignment
Operator

X = 5
NOT an equality!
In Python,
equality is
represented as
==

Variables
hold values

• To assign a variable, use
“variableName = expression”

• pi = 3.14
• pi
• Lost = 4815162342
• Lost
• 22 = x # Error!

Why?
• Not all variable names are

permitted

Naming Rules

• Names are case sensitive and cannot start with a number. They can contain letters,
numbers, and underscores.
• bob Bob _bob _2_bob_ bob_2 BOB
•
• There are some reserved words:

• and, assert, break, class, continue, def, del, elif, else, except, exec,
finally, for, from, global, if, import, in, is, lambda, not, or, pass, print, raise,
return, try, while

Changing existing variables
(“re-binding” or “re-assigning”)

x = 2 - 1
x
y = x
y
x = 5
x
y

• “=” in an assignment is not a promise of eternal equality
• Evaluating an expression gives a new (copy of a) number,

rather than changing an existing one

x = 2
print x
y = x + 1
print y
x = 5
print y
z = x + 1
print x
print y
print z

State of the computer: Printed output:

2
3
3
5
3
6

x: 2
y: 3
z: 6

x: 5

To visualize a program’s execution: http://people.csail.mit.edu/pgbovine/python/tutor.html

How an assignment is executed
1. Evaluate the right-hand side to a value
2. Store that value in the variable

http://people.csail.mit.edu/pgbovine/python/tutor.html

2. Python
performs

operations

Arithmetic
Operations
(already
seen)

• 22 * 10
• 22 / 10
• 22.0 / 10
• 3 ** 2
• (5 +6) * (4 -3)

• x = 3
• y = x + 2
• z = x + y

• What about this?
• z = 2
• z - 5
• z

More operations: Conditionals
(return TRUE/FALSE)

22 > 4
22 < 4
22 == 4
x = 100 # Assignment, not conditional!
x == 200
x == 100
22 = 4 # Error!
x >= 5
not True
not (x >= 200)
3<4 and 7<6
4<3 or 5<6

temp = 72
is_liquid = temp > 32 and temp < 212

A string represents text, can use single or double quotations
“Python” or 'Python'
myName = “Steph"

Operations:
• Length:

len(myName)

• Concatenation:
“Steph" + ‘DeMora’ #What will this do?

• More advanced: Containment/searching:
‘eph' in myName #What do these return?
“v" in myName

More operations: “strings”

Command name Description

abs(value) absolute value

ceil(value) rounds up

cos(value) cosine, in radians

floor(value) rounds down

log(value) logarithm, base e

log10(value) logarithm, base 10

max(value1, value2) larger of two values

min(value1, value2) smaller of two values

round(value) nearest whole number

sin(value) sine, in radians

sqrt(value) square root

Constant Description
ea 2.7182818...

pi 3.1415926...

Mathematical Operations
• Python has useful commands for performing calculations.

• To use many of these commands, you must write the following at the top of your
Python program:

• import math

3. Different
types act
differently

Operations
behave
differently
on
different
types

• Moral: Python sometimes
tells you when you do
something that does not
make sense.

• 3.0 + 4.0
• 3 + 4
• 3 + 4.0
• "3" + "4"
• 3 + "4"

Error
• 3 + True

What will this
do?

Operations behave differently on different types

15.0 / 4.0

15 / 4

15.0 / 4

15 / 4.0

Type conversion:
float(15)
int(15.0)
int(15.5)
int(“15”)
str(15.5)
float(15) / 4
int(x)

4. A
program is

a recipe

x = (enter some value here)
y = (enter some value here)
z = x + y
print “x=“, x
print “y=“, y
print "The sum of", x, “and", y, “is", z

What is a program?
• A program is a sequence of instructions
• The computer executes one after the other, as if they had been

typed to the interpreter
• Saving as a program is better than re-typing from scratch

Programming Basics

• code or source code: The sequence of instructions
in a program.

• syntax: The set of legal structures and commands
that can be used in a particular programming
language.

• output: The messages printed to the user by a
program.

• console: The place where the user interacts with the
program

• Some source code editors pop up the console
as an external window, and others contain their
own console window.

37

compile execute
outputsource code

Hello.java
byte code
Hello.class

interpret
outputsource code

Hello.py

Compiling and interpreting
Many languages require you to compile (translate) your program into a form that
the machine understands.

Python is instead directly interpreted into machine instructions.

2. Python performs operations1. A variable contains a value

4. A program is a recipe3. Different types act differently

39

Exercise 1:
x = (enter some value here)
y = (enter some value here)
z = x + y
print “x=“, x
print “y=“, y
print "The sum of", x, “and", y, “is", z

% python filename.py

Running programs on UNIX

Comments

this is a comment

• Start comments with # – the rest of line is ignored.

• Can include a “documentation string” as the first line of any new
function or class that you define.

import statements

import numpy
import os

or

import numpy as np
import os

or

import numpy as np, os

• Import allows a Python script to import additional modules

#get inputs from the user
x = input(‘Provide a value for x:’)
y = input (‘Provide a value for y:’)

#calculate output
z = x + y

#print results to the user
print “x = “, x
print “y = “, y
print "The sum of", x, "and", y, "is", z

43

Exercise 1:

How could we take as input from the user
a Fahrenheit temperature, and then
convert it to Celsius?

Mathematical Equation for Celsius:
(F - 32) × 5/9

Think about:
Input and output
Integers vs Floats

44

Exercise 2: Fahrenheit to Celsius:

#get inputs from the user
F = input(‘Provide the temperature in Fahrenheit:’)

#calculate output
#make sure you maintain floats!
#try C = (F-32) * 5 / 9
C = (F – 32) * 5.0 / 9.0

#print results to the user
print "The temperature in Celsius is", C

45

Exercise 2: Fahrenheit to Celsius:

“if” provides a means of checking whether some condition is
met.
Tabs are used to show what should run if the condition is
met

if (5 < 6):
print “five is less than six”

if (x == “banana”):
print “x is banana”

if (y <= z):
print “y is less than or equal to z”
print “therefore I cannot choose the wine in front of

me”

46

Exercise 3: if statements

Have the user input a number. If this number is greater than
1000, output a message “Wow that is a big number!”

47

Exercise 3: if statements

#get inputs from the user
x = input(‘Provide a value:’)

#print results to the user
if (x > 1000):

print “Wow that is a big number!”

*ALTERNATIVELY:
if (1000 < x):

print “Wow that is a big number!”

48

Exercise 3: if statements

else if provides a means to check alternate conditions:

Consider this code:

if (x < 5):
print “x is pretty small”

if (x < 10):
print “x is average”

if (x < 15):
print “x is large”

if (x >= 15):
print “x is huge”

49

Exercise 4: else if

else if provides a means to check alternate conditions:

Consider this code:

if (x < 5):
print “x is pretty small”

elif (x < 10):
print “x is average”

elif (x < 15):
print “x is large”

else:
print “x is huge”

50

Exercise 4: else if

Let’s make a text-based adventure!

First line should be this:
x = raw_input(‘You are trapped with five dragons.

(A)run (B)fight (C)make friends:’)

You should output a unique message based on whether the user
types A, B, or C

How do you handle when a user types something else?

51

Exercise 4: else if

#get inputs from the user
x = raw_input(‘You are trapped with five dragons.

(A)run (B)fight (C)make friends:’)

#print results to the user
if (x == “A”):

print “You cannot escape. You die!”
elif (x == “B”):

print “You cannot win. You die!”
elif (x == “C”):

print “They do not want to be friends. You die!”
elif (x == “cheat”):

print “You found the way to cheat. You win!”
else:

print “Invalid choice. You die”

52

Exercise 4: else if

Moving
forward…

• There are many more tools
available in Python that we can't
cover here.

• If you want to move forward, the
next things to look at would be:

• Lists
• For loops/while loops
• Reading/Writing files

Lists/arrays/DataFrames
• Save many values into a giant “list” (similar to a 1D array)
• Most likely needed for data analysis
• Can store any type into lists

myList = [1, 2.0, 3, ‘hello’, ‘bye’, 3.1415]

Lists/arrays/DataFrames
• Save many values into a giant “list” (similar to a 1D array)
• Most likely needed for data analysis
• Can store any type into lists

myList = [1, 2.0, 3, ‘hello’, ‘bye’, 3.1415]
print myList[3]

Lists/arrays/DataFrame
• Save many values into a giant “list” (similar to a 1D array)
• Most likely needed for data analysis
• Can store any type into lists

Numpy
numpy.array([1, 2, 3, 4])

myList = [1, 2.0, 3, ‘hello’, ‘bye’, 3.1415]
print myList[3]

Lists/arrays/DataFrames
• Save many values into a giant “list” (similar to a 1D array)
• Most likely needed for data analysis
• Can store any type into lists

Numpy
numpy.array([1, 2, 3, 4])
numpy.array([1,2], [3,4])

myList = [1, 2.0, 3, ‘hello’, ‘bye’, 3.1415]
print myList[3]

Lists/arrays/DataFrames
• Save many values into a giant “list” (similar to a 1D array)
• Most likely needed for data analysis
• Can store any type into lists

Numpy
numpy.array([1, 2, 3, 4])
numpy.array([1,2], [3,4])

myList = [1, 2.0, 3, ‘hello’, ‘bye’, 3.1415]
print myList[3]

Lists/arrays/DataFrames
• Save many values into a giant “list” (similar to a 1D array)
• Most likely needed for data analysis
• Can store any type into lists

Numpy
numpy.array([1, 2, 3, 4])
numpy.array([1,2], [3,4])

Pandas
d = {'col1': [1, 2], 'col2': [3, 4]}
df = pd.DataFrame(data=d)

myList = [1, 2.0, 3, ‘hello’, ‘bye’, 3.1415]
print myList[3]

col1 col2
0 1 3
1 2 4

Python editors

• Eclipse with PyDev http://pydev.org/
• Sublime Text http://www.sublimetext.com/
• PyCharm http://www.jetbrains.com/pycharm/

• Why use a python editor
• Syntax Highlighting
• Error Detection
• Auto-completion

http://pydev.org/
http://www.sublimetext.com/
http://www.jetbrains.com/pycharm/

• Last commonly used release before version 3

• Implements some of the new features in version 3,
but fully backwards compatible

• Released a few years ago

• Many changes (including incompatible changes)

• More existing third party software is compatible with
Python 2 than Python 3 right now

Resources

Python’s website
python.org/

Codeacademy
codecademy.com/tracks/

python

GradQuant Resources
gradquant.ucr.edu/worksh

op-resources/

Stack Overflow website
stackoverflow.com/

http://www.python.org/
http://www.codecademy.com/tracks/python
http://gradquant.ucr.edu/workshop-resources/
http://stackoverflow.com/

GradQuant

One-on-one Consultations: Make appointment at
gradquant.ucr.eduMake

Keep an eye out for emails regarding more seminars
gradquant.ucr.edu/workshop-resources/Keep

Remember to fill out the seminar survey. Thank you!Remember

Other
libraries/python-
related tools

• PyCharm

• Sublime Text

• Numpy
• SciPy

• Seaborn
• Bokeh

• Plotly

• Pandas

• Scikit-learn

• Django

• Tensorflow (python
interface)

• Anaconda
• Other libraries specific

to your field (e.g.
Biopython)

